
CPS122 Lecture: State and Activity Diagrams in UML

last revised March 11, 2016
Objectives:

1. To show how to create and read State Diagrams
2. To introduce UML Activity Diagrams

 Materials:

1. Answers to quick check questions from chapter 7 plus chapter 8 a, b, g
2. Demonstration of “Racers” program
3. Handout and Projectable on Web: State diagram for Session
4. Handout: Code for Session class performSession() method
5. Executable of Rental Store project initial software to be given students
6. Projectable: State Diagram for Rental Store GUI
7. Projectable of text figures 7.12, 7.13
8. Handout of Activity diagram for Racers
9. Projectable of text figure 8.10

I. Introduction

A. Go over quick check questions chapter 7 + chapter 8 a, b, g only

B. We have drawn a distinction between the static aspects of a system
and its dynamic aspects. The static aspects of a system have to do
with its component parts and how they are related to one another; the
dynamic aspects of a system have to do with how the components
interact with one another and/or change state internally over time.

C. We have been looking at one aspect of the dynamic behavior of a
system - the way various objects interact to carry out the various use
cases. We have looked at two ways of describing this:

1. Sequence diagrams

2. Communication diagrams

1

D. We now want to look two additional aspects of dynamic behavior

1. How an individual object changes state internally over time.

a) Example: As part of doing the domain analysis of a traffic light
system, it is important to note that individual signals go through a
series of states in a prescribed order - modeled by the following state
diagram:

(Note: this is correct for the US but not for all countries in the
world!)

An important “business rule” that any traffic light system must obey
is that the light must be yellow for a certain minimum period of time
(related to vehicle speed in the intersection) between displaying
green and displaying red. Ensuring that a system exhibits this
behavior is essential for safety.

b) Note the difference between an interaction diagram and a state
diagram - the former deals with how several objects work
together to accomplish one use case; the latter deals with the
internal state of one object, which may be affected by multiple
use cases.

Compare with a person’s internal state versus interactions with
others. The “class session” use case involves several “Student”
objects and a “Professor” object. Something that happens in
class may affect the internal state of a student (e.g. getting back

2

a test with a good (or for that matter bad) grade). The internal
state of a “Student” object (e.g. sleepy) affects not only this use
case, but also others like “chapel”.

2. The possibility that several different things may be happening in
parallel at the same time.

Example: Demonstrate “Racers” program.

Note: we will discuss this more thoroughly in CPS221

II. State Diagrams

A. We will now consider a tool that can be used to model this aspect of
the behavior of an object: The State Diagram. It can be used either for
analysis (if our goal is to record how behavior actually transpires in a
system we are modeling) or for design (if our goal is to describe a
behavior we want to produce.)

Note: UML 1 referred to these as statechart diagrams; UML 2 calls
them State Machine Diagrams - sometimes shortened to State
Diagrams. The book uses the latter term.

B. Often, while we analyze a system, we discover that some objects in a
system undergo defined state transitions over time, which is an
important part of the dynamic behavior of the system.

1. Example: we just looked at an example of this in the domain of
traffic lights.

2. What about our ATM example?

ASK

a) The ATM itself (represented by an ATM object in our case)
goes through a series of states (off, on, serving a customer, etc.)

3

b) Individual sessions pass through a series of states

c) Individual transactions also pass through a series of states.

(Note that the objects that have this characteristic are often
controller objects.)

C. In such cases, it may prove helpful to develop a State Diagram,
showing the states it passes through - especially if there is any
complexity to the state transitions.

1. Example: We will develop a state diagram for a session.

a) Referring to the use case for a session, what distinct states can
we identify?

ASK

(1)Reading card

(2)Asking for PIN

(3)Asking for transaction choice

(4)Performing transaction

(5)Ejecting card at the end of the session

(6)Session finished

b) Further, the transitions between states for a session follow a
fairly complex pattern - e.g.

(1)After reading a card, we go either to asking for PIN or to
ejecting card, depending on whether the card was readable.

4

(2)After asking for PIN, we normally go to asking for a
transaction choice; but we go to ejecting card if the customer
presses cancel.

(3)After asking for a transaction choice, we normally go to
performing the transaction, but we go to ejecting card if the
customer presses cancel.

(4)After performing a transaction, we can go one of three ways:

(a) To choosing transaction, if customer says he/she wants to
do another.

(b)To ejecting card, if customer says he/she doesn’t want to
do another.

(c) To session finished, if the card was retained due to too
many invalid PINs.

c) PROJECT STATE DIAGRAM FOR SESSION FROM WEB +
HANDOUT

d) We have already noted that there are other objects for which
such a diagram would prove useful.

ASK

SHOW REMAINING STATE DIAGRAMS ON WEB

2. In general, a state diagram is a useful analysis tool for:

a) An object that is responsible for a use case, provided that the
use case has enough internal complexity to warrant doing a
state diagram. (If the use case consists of just a few steps, with
no complex variation in sequencing, then a state diagram may
not be warranted.)

5

b) An object has complex internal states, even though it is not
directly responsible for a use case

Example: In the case of the ATM simulation, the object
representing the network connection to the bank would likely
warrant a state diagram, because network connections typically
pass through a series of states as they dialog with a peer on the
other end. We have omitted that from the example, because
we’ve avoided getting into the details of how the network
connection works. A real system would, of course, have to deal
with this.

D. Another place where state diagrams are often useful is in the design of
graphical user interfaces. We will say more about UI design later, but
for now we want to focus on how state diagrams can be used.

1. The states correspond to the different visible states of the GUI -
i.e. what screen etc. is being displayed and what buttons/menus are
active.

2. The transitions correspond to the various user gestures - i.e.
options the user may choose.

3. As an example, we'll construct a portion of the state diagram for
the GUI of the Rental store - which you will be given to use in
your projects - the portion that pertains to renting items.

DEMONSTRATION: Rental Store GUI

a) Rent Tab

(1)Bad Customer ID (type “bad”) entered - error message and
stays in same state

6

(2)Valid Customer ID entered - goes to rent details card.

b) Rent details card - no items shown

(1)Bad Item ID (type “bad”) entered - error message and stays
in same state

(2)Valid item ID - transitions to rent details card - one or more
items shown - none selected

c) Rent details card - one or more items shown

(1)Possible to add more items (demonstrate both valid and
invalid)

(2)Remove item (possible only if an item is selected) - Show
alternate transitions with guards

(a) Rent details card - no items shown if one was shown

(b)Rent details card - one or more items shown if more than
one was shown

(3)Clear all items - transitions to Rent details card no items
shown

(4)Rent all items - transitions to Rent Tab

(5)Cancel - transitions to Rent Tab

4. Develop state diagram for this portion as a class with three states -
Rent tab displayed; rent details card with no items listed; rent
details card with items listed.

7

PROJECT

E. A State diagram makes use of several symbols:

1. A rounded rectangle denotes a state.

2. Arrows connecting states denote state transitions. A transition is
labeled with one or two pieces of information

a) The situation under which the transition occurs (always)

(1)This may take the form of a label on the transition itself.

(2)There may also be a guard associated with the label.

8

Rent Tab

Rent Details Card
(no items shown)

Rent Details Card
(item(s) shown)

Rent Items Clicked
[Valid customer ID entered]

Add Above Item Clicked
[Valid item ID entered]

Rent Items Clicked
[Invalid customer ID entered] / error message

Add Above Item Clicked
[Invalid item ID entered] / error message

Add Above Item Clicked
[Invalid item ID entered] / error message

Add Above Item Clicked
[Valid item ID entered]

Remove Item Clicked
[Only one item listed]

Remove Item Clicked
[More than one item listed]

Rent All Items Clicked

Cancel Clicked

Clear All Items
Clicked

Example: If we were modeling a ChargeAccount object
(representing a credit card account), we might have states “current”
and “overdue”, with a payment transition from overdue to current
guarded by the condition “amount ≥ minimum”

Current Overdue
payment [amount ≥ minimum]

b) Action that takes place on the transition (optional)

(in our examples, actions appear on the transitions for the ATM
itself, but not for Session and Transaction.)

3. A filled in dot denotes the initial start - where the system starts.

4. A filled in dot in a circle denotes a final state. When a system
reaches the final state, no further state transitions are possible.

(Note that the diagrams for Session and Transaction have final
states; but the ATM state diagram does not - turned off is one of its
states, but there is no final state per se because it can always be
turned back on.)

5. Additional notation is possible, but this is more advanced than
what we want to talk about now.

F. It is also possible to incorporate information about specific actions to
be performed during a state, or when entering or leaving it.

1. The state diagram for the Overall ATM includes entry actions for
two of the three states. These are performed as soon as the state is
entered.

9

2. A state can also have an exit action, to be performed just before
leaving the state.

3. A state can have a “do” action, to be performed continuously while
in the state.

Figure 7.12 on page 193 illustrates all of these - though the
illustration is a bit forced. Actually, just the “do” action is all that’s
needed! PROJECT

G. Finally, it is sometimes helpful to incorporate a state diagram within
another state diagram, describing a complex internal structure for a
single state.

1. This can be done by physically incorporating the nested state
diagram into the larger state on the diagram.

EXAMPLE: Text Fig. 7.13 p. 194 PROJECT

2. Alternately, the sub diagram can be drawn separately and
referenced by an include in the containing state

EXAMPLE: The overall ATM diagram’s SERVING CUSTOMER
state explicitly includes the entire Session state diagram; its
PERFORMING TRANSACTiON state explicitly includes the
Transaction state diagram.

3. Physical inclusion is necessary, when the sub diagram can be
entered at more than one place. Inclusion by the use of include
makes an easier to read diagram if the included state diagram has
only a single entry point.

H. A state diagram can often be translated into code in a very
straightforward way that preserves the clarity of the state diagram

HANDOUT: Code for performSession () method of Session - compare
to State Diagram on the web.

10

I. For your team project milestone 1-3, you will be developing a state
diagram for a single copy in the rental store. Let's do a bit of
preliminary thinking here.

1. What states can it be in?

ASK

On shelf (in the store)

Checked out to a customer

On hold (at the desk, waiting for a customer to pick it up)

On rack to be sold.

2. What state is the initial state (shown on the diagram with the start

state symbol)?

ASK

(Note: we didn't use this symbol on the GUI State Diagram
because it was actually to be understood as part of a larger system)

3. From what states and under what circumstances can it be removed
from the system (shown on the diagram with the final state

symbol)?

ASK

(Note: again we didn't use this symbol on the GUI State Diagram
because it was part of the larger system)

11

III.UML Activity Diagrams

A. The other chapter in the book that you read for today discussed a type
of UML Diagram called an Activity Diagram. Such a diagram can be
constructed for a simple program, but it is particularly useful for
showing processes in which there is concurrent processing.

EXAMPLE: HANDOUT: Activity Diagram for Racer Problem

Demonstrate program again

B. Features:

1. Rounded rectangles represent activities.

2. Arrows represent flow from one activity to the next. Each activity
is assumed to start as soon as its predecessor completes.

3. Where there is concurrency, the diagram shows “forking” of one
thread into two or more, and joining of two or more threads into
one. (Forks and joins should match.)

4. The diagram uses “swim lanes” to show the various parts of the
system that are performing a task concurrently.

C. ANOTHER EXAMPLE: Figure 8.10 on page 209 of the book. In this
case the diagram is showing concurrency between three humans and
the computer.

PROJECT

D. We will say more about use of concurrency in programs in CPS221.

12

